Hankel Edge Ideals of Trees and (Semi-)Hamiltonian Graphs
نویسندگان
چکیده
In this paper, we study the Hankel edge ideals of graphs. We determine minimal prime ideal labeled Hamiltonian and semi-Hamiltonian graphs, investigate radicality, being a complete intersection, almost intersection set-theoretic for such also consider trees with natural labeling, called rooted labeling. characterize whose is moreover, those initial respect to reverse lexicographic order satisfies property.
منابع مشابه
On (Semi-) Edge-primality of Graphs
Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an ...
متن کاملBinomial Edge Ideals of Graphs
We characterize all graphs whose binomial edge ideals have a linear resolution. Indeed, we show that complete graphs are the only graphs with this property. We also compute some graded components of the first Betti number of the binomial edge ideal of a graph with respect to the graphical terms. Finally, we give an upper bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of...
متن کاملBrother trees: A family of optimal 1p-hamiltonian and 1-edge hamiltonian graphs
In this paper we propose a family of cubic bipartite planar graphs, brother trees, denoted by BT(n) with n 2. Any BT(n) is hamiltonian. It remains hamiltonian if any edge is deleted. Moreover, it remains hamiltonian when a pair of nodes (one from each partite set) is deleted. These properties are optimal. Furthermore, the number of nodes in BT(n) is 6 · 2n − 4 and the diameter is 2n+ 1. 2003 ...
متن کاملBinomial edge ideals and rational normal scrolls
Let $X=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n\ x_2& ldots & x_n & x_{n+1} end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...
متن کاملEdge-Disjoint Spanning Trees, Edge Connectivity, and Eigenvalues in Graphs
Let λ2(G) and τ (G) denote the second largest eigenvalue and the maximum number of edge-disjoint spanning trees of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and bounds of τ (G), Cioabă and Wong conjectured that for any integers d , k ≥ 2 and a d -regular graph G, if λ2(G) < d − 2k−1 d+1 , then τ (G) ≥ k. They proved the conj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society
سال: 2022
ISSN: ['2180-4206', '0126-6705']
DOI: https://doi.org/10.1007/s40840-022-01325-w